Given any permutation of the numbers {0, 1, 2,…, N−1}, it is easy to sort them in increasing order. But what if Swap(0, *)
is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (≤10^5) followed by a permutation sequence of {0, 1, …, N−1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:
10
3 5 7 2 6 4 9 0 8 1
Sample Output:
9
思路
- 如果在交换过程中出现数字0在0号位的情况,就随意选择一个还没有回到“本位”的数字,让其与数字0交换位置
注意点
- 在循环中寻找一个不在本位上的数时,如果每次都从头开始遍历序列中的数,则会有两组数据超时(因为复杂度是二次方级别的)。合适的做法是从整体上定义一个变量 k,用来保存目前序列中不在本位上的最小数(初试为1),当交换过程中出现0回归本位的情况时,总是从当前的 k 开始继续增大寻找不在本位上的数,这样能保证复杂度从整体上是线性级别(k 从 1 增长到 n)
- 该题用一个 index[] 数组表示下标值所在的位置即可,无需原始数组
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 100000;
int main() {
int n, index[maxn], num, k = 1, ans = 0, cnt = 0;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &num);
index[num] = i;
if (index[num] != num && num != 0) {
cnt++;
}
}
while (cnt != 0) {
if (index[0] == 0) {
for (; k < n; k++) {
if (index[k] != k) {
break;
}
}
swap(index[0], index[k]);
} else {
swap(index[0], index[index[0]]);
cnt--;
}
ans++;
}
printf("%d", ans);
return 0;
}