Given a sequence of positive integers and another positive integer p. The sequence is said to be a perfect sequence if M≤m×p where M and m are the maximum and minimum numbers in the sequence, respectively.
Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.
Input Specification:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (≤10^5) is the number of integers in the sequence, and p (≤ 10^9 ) is the parameter. In the second line there are N positive integers, each is no greater than 10^9.
Output Specification:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.
Sample Input:
10 8
2 3 20 4 5 1 6 7 8 9
Sample Output:
8
思路
- 能使选出的数个数最大的方案,一定是在该递增序列中选择连续的若干个数的方案
- 如果强行进行O(n^2)的二重循环遍历,那么根据题目的数据范围,肯定是会超时的。这里有两种方法解决这个问题:二分查找和 two pointers。
- 本人利用 upper_bound() 函数来二分寻找第一个大于 m * p 的数的位置,那么 M 的最大数的位置即为该位置 -1。
注意点
- nums[i] * p 可能达到 10^{18},可以使用 long long 来定义数组。
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 100000;
int main() {
int n;
long long p, nums[maxn];
scanf("%d %lld", &n, &p);
for (int i = 0; i < n; i++) {
scanf("%lld", &nums[i]);
}
sort(nums, nums + n);
int ans = 0;
long long m = nums[0];
for (int i = 0; i < n; i++) {
int j = upper_bound(nums + i + 1, nums + n, nums[i] * p) - nums - 1;
if (j - i + 1 > ans) {
ans = j - i + 1;
}
}
printf("%d", ans);
return 0;
}